Clustering Sets in High Dimensions

Alexander Miller

Database Research Group Department of Computer Sciences University of Salzburg

DB Retreat, 2020

January 20, 2020

Figure: Visualization of a density-based clustering of two-dimensional data¹

¹By Chire - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=17085332

A. Miller

- A collection of sets containing integer tokens
- Dimensionality d is the number of different tokens in all sets

$$\begin{array}{ccc}
r_1 & \{1,3,5\} \\
r_2 & \{1,2,3,4\} \\
\hline
d = 5
\end{array}$$

Definition (Hamming Distance)

The Hamming distance H of two sets r and s is defined as $H(r,s) = |(r \cup s)| - |(r \cap s)|.$

•
$$H(r,s) = 0 \Leftrightarrow r = s$$

• H(r,s) = H(s,r)

Definition (Clustering)

Clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters).

from Wikipedia²

²Wikipedia contributors. *Cluster analysis* — *Wikipedia, The Free Encyclopedia.* https:

//en.wikipedia.org/w/index.php?title=Cluster_analysis&oldid=931629639. [Online; accessed 17-January-2020]. 2019.

- Density-based spatial clustering of applications with noise³
- Computes a clustering for a collection of points D
- Every point $\in D$ is identified as member of one cluster or noise
- ε: Distance threshold
- *MinPts*: Minimum number of points in ε -neighborhood
- Core points, border points, noise points

³Martin Ester et al. "A Density-Based Algorithm for Discovering Clusters a Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise". In: *Proceedings of the Second International Conference on Knowledge Discovery and Data Mining*. KDD'96. Portland, Oregon: AAAI Press, 1996, pp. 226–231.

Definition (ε -neighborhood)

The ε -neighborhood of a point q is the set $N_{\varepsilon}(q)$ of all points $p \in D$ with $H(p,q) \leq \varepsilon$.

Definition (directly density-reachable)

A point p is directly density-reachable from a point q wrt. ε , MinPts if

- $\ \, {\boldsymbol{ 0 } } \ \, p \in {\boldsymbol{ N } }_{\! \varepsilon}(q) \ \, {\rm and } \ \,$
- ② $|N_{\varepsilon}(q)| ≥ MinPts$ (core point condition)

Let MinPts = 3 for the example.

Definition (density-reachable)

A point *p* is *density-reachable* from a point *q* wrt. ε , *MinPts* if there is a chain of points $p_1, \ldots, p_n, p_1 = q, p_n = q$ such that p_{i+1} is directly density-reachable from p_i .

Definition (density-connected)

A point p is density-connected to a point q wrt. ε , MinPts if there is a point o such that both p and q are density-reachable from o.

- Pick any unvisited point $p \in D$
- If p is a core point then all density-reachable, unvisited points belong to the same cluster
 - Find all neighbors of p and set their cluster id
 - Repeat for all neighboring core points
- 8 Repeat steps 1 and 2 until all points have been visited
- Points not belonging to any cluster are noise points

- Designed for spatial data
- DBSCAN assumes a time complexity of $O(\log n)$ for a region query This does not hold for high-dimensional data!

- Compute the neighborhoods of all sets as an AllPairs set similarity join Finds all pairs (r, s) with H(r, s) ≤ ε
- Store the result in a data structure with constant time lookup
- Use the result for the DBSCAN algorithm

	#sets	max set size	avg set size	Dimensionality
AOL	$1.0 \cdot 10^{7}$	245.0	3.0	$3.9\cdot10^{6}$
NETFLIX	$4.8 \cdot 10^{5}$	$1.8\cdot 10^4$	209.5	$1.8\cdot 10^4$
ORKUT	$2.7 \cdot 10^{6}$	$4\cdot 10^4$	119.7	$8.7\cdot 10^6$
OURS	$9.2\cdot10^{6}$	$6.8\cdot10^4$	28.0	$1.2\cdot 10^4$

Table: Characteristics of datasets from literature⁴ and our dataset.

⁴Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. "An Empirical Evaluation of Set Similarity Join Techniques". In: *Proc. VLDB Endow.* 9.9 (May 2016), pp. 636–647. ISSN: 2150-8097. DOI: 10.14778/2947618.2947620. URL: http://dx.doi.org/10.14778/2947618.2947620.

A. Miller

Results

- Computing neighbors of a given point is expensive
- We compute too many neighborhoods

What is actually computed

What should be computed

- How to compute a set clustering efficiently?
- How can we efficiently identify core points? Circular problem: We only need neighbors of core points but to find out if a point is a core point we need its neighbors
- How can we avoid redundant neighborhood computations?

1 Is the Hamming distance symmetric?

- Is the Hamming distance symmetric?
- How does the high dimensionality of our dataset affect the neighborhood query?

- Is the Hamming distance symmetric?
- How does the high dimensionality of our dataset affect the neighborhood query?
- **③** Is there a case where DBSCAN is non-deterministic?