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Figure: Visualization of a density-based clustering of two-dimensional data1

1By Chire - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=17085332
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Data

A collection of sets containing integer tokens

Dimensionality d is the number of different tokens in all sets

r1 {1, 3, 5}
r2 {1, 2, 3, 4}

d = 5
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Distance Metric
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Hamming Distance

Definition (Hamming Distance)

The Hamming distance H of two sets r and s is defined as
H(r , s) = |(r ∪ s)| − |(r ∩ s)|.

H(r , s) = 0⇔ r = s

H(r , s) = H(s, r)

A. Miller Clustering Sets in High Dimensions DB Retreat 2020 5 / 25



Definition

Definition (Clustering)

Clustering is the task of grouping a set of objects in such a way that
objects in the same group (called a cluster) are more similar (in some
sense) to each other than to those in other groups (clusters).

from Wikipedia2

2Wikipedia contributors. Cluster analysis — Wikipedia, The Free Encyclopedia.
https:

//en.wikipedia.org/w/index.php?title=Cluster_analysis&oldid=931629639.
[Online; accessed 17-January-2020]. 2019.
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DBSCAN

Density-based spatial clustering of applications with noise3

Computes a clustering for a collection of points D

Every point ∈ D is identified as member of one cluster or noise

ε: Distance threshold

MinPts: Minimum number of points in ε-neighborhood

Core points, border points, noise points

3Martin Ester et al. “A Density-Based Algorithm for Discovering Clusters a
Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise”. In: Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining. KDD’96. Portland, Oregon: AAAI Press, 1996, pp. 226–231.
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DBSCAN Definitions

Definition (ε-neighborhood)

The ε-neighborhood of a point q is the set Nε(q) of all points p ∈ D with
H(p, q) ≤ ε.
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DBSCAN Example
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DBSCAN Definitions

Definition (directly density-reachable)

A point p is directly density-reachable from a point q wrt. ε, MinPts if

1 p ∈ Nε(q) and

2 |Nε(q)| ≥ MinPts (core point condition)

Let MinPts = 3 for the example.
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DBSCAN Definitions

Definition (density-reachable)

A point p is density-reachable from a point q wrt. ε, MinPts if there is a
chain of points p1, . . . , pn, p1 = q, pn = q such that pi+1 is directly
density-reachable from pi .
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DBSCAN Definitions

Definition (density-connected)

A point p is density-connected to a point q wrt. ε, MinPts if there is a
point o such that both p and q are density-reachable from o.
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DBSCAN Example
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Very High-Level DBSCAN Algorithm

1 Pick any unvisited point p ∈ D
2 If p is a core point then all density-reachable, unvisited points belong

to the same cluster
1 Find all neighbors of p and set their cluster id
2 Repeat for all neighboring core points

3 Repeat steps 1 and 2 until all points have been visited

4 Points not belonging to any cluster are noise points
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Problems

Designed for spatial data

DBSCAN assumes a time complexity of O(log n) for a region query
This does not hold for high-dimensional data!
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Baseline Approach

1 Compute the neighborhoods of all sets as an AllPairs set similarity join
Finds all pairs (r , s) with H(r , s) ≤ ε

2 Store the result in a data structure with constant time lookup

3 Use the result for the DBSCAN algorithm
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Statistics

#sets max set size avg set size Dimensionality

AOL 1.0 · 107 245.0 3.0 3.9 · 106

NETFLIX 4.8 · 105 1.8 · 104 209.5 1.8 · 104

ORKUT 2.7 · 106 4 · 104 119.7 8.7 · 106

OURS 9.2 · 106 6.8 · 104 28.0 1.2 · 104

Table: Characteristics of datasets from literature4 and our dataset.

4Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. “An Empirical Evaluation of
Set Similarity Join Techniques”. In: Proc. VLDB Endow. 9.9 (May 2016), pp. 636–647.
issn: 2150-8097. doi: 10.14778/2947618.2947620. url:
http://dx.doi.org/10.14778/2947618.2947620.
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Results
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Figure:
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Problems

Computing neighbors of a given point is expensive

We compute too many neighborhoods
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What is actually computed
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What should be computed
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Open Questions

How to compute a set clustering efficiently?

How can we efficiently identify core points?
Circular problem: We only need neighbors of core points but to find
out if a point is a core point we need its neighbors

How can we avoid redundant neighborhood computations?
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Questions

1 Is the Hamming distance symmetric?

2 How does the high dimensionality of our dataset affect the
neighborhood query?

3 Is there a case where DBSCAN is non-deterministic?
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